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CHAPTER 2

GRAPH FIBRATIONS AND
SYMMETRIES OF NETWORK

DYNAMICS

2.1 Abstract

Dynamical systems with a network structure can display remarkable phe-
nomena such as synchronisation and anomalous synchrony breaking. A
methodology for classifying patterns of synchrony in networks was developed
by Golubitsky and Stewart. They showed that the robustly synchronous dy-
namics of a network is determined by its quotient networks. This result was
recently reformulated by DeVille and Lerman, who pointed out that the re-
duction from a network to a quotient is an example of a graph fibration. The
current paper exploits this observation and demonstrates the importance of
self-fibrations of network graphs. Self-fibrations give rise to symmetries in
the dynamics of a network. We show that every network admits a lift with
a semigroup or semigroupoid of self-fibrations. The resulting symmetries
impact the global dynamics of the network and can therefore be used to
explain and predict generic scenarios for synchrony breaking. Also, when
the network has a trivial symmetry groupoid, then every robust synchrony
in the lift is determined by symmetry.



2.2. INTRODUCTION

2.2 Introduction

There are remarkable similarities between dynamical systems with a network
structure and dynamical systems with symmetry. For instance, symmetric
dynamical systems automatically support symmetric solutions. A specific
network structure can analogously force a dynamical system to admit syn-
chronous and partially synchronous solutions [5, 10, 13, 12, 16, 20, 25]. This
phenomenon is known as “robust network synchrony”. It is an element that
distinguishes the dynamics of networks from that of arbitrary systems. Ro-
bust network synchrony is fully understood since the work of Golubitsky and
Stewart et al. [12, 16, 24, 25].

In addition, network dynamical systems can display very unusual bifur-
cations [1, 4, 8, 9, 10, 11, 17, 18, 22]. In particular, there are many exam-
ples of network systems with anomalous steady state and Hopf bifurcations.
These so-called synchrony breaking bifurcations are often governed by spec-
tral degeneracies and are reminiscent of the symmetry breaking bifurcations
that occur in equivariant (symmetric) dynamical systems. We note that the
presence of robust synchrony does not explain these anomalous bifurcations,
because synchrony does not affect the global phase space of a network. What
causes the anomalous synchrony breaking of networks remains unknown in
general.

Golubitsky and Stewart et al. [12, 16, 24, 25] showed that the robustly
synchronous dynamics of a network is determined by its so-called “quotient
networks”. Robust synchrony can therefore completely be understood in
terms of the network graph. Quotient networks arise by identifying the cells
of the original network that evolve synchronously. DeVille and Lerman [3]
recently pointed out that the corresponding quotient map (from the original
network graph to its quotient) is an example of a so-called “graph fibration”.
They also show that every graph fibration φ : N1 → N2 between two net-
works produces a conjugacy between the dynamics of N2 and the dynamics
N1. This latter fact had also been proved by computer scientists [2] in
2002. The result of DeVille and Lerman can be thought of as a geometric
reformulation of the original result of Golubitsky and Stewart.

There are many classical tools for the study and classification of equiv-
ariant bifurcations and equivariant singularities [7, 6, 14, 15]. These include
representation theory and equivariant singularity theory. It is quite dis-
appointing that similar “tailored” techniques currently do not exist for the
analysis of bifurcations in networks. The reason, arguably, is that network
structure is not an intrinsic geometric property of a dynamical system: it is
not preserved under coordinate changes.

A first step towards overcoming this problem will be taken in this paper.
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We shall use the language of graph fibrations to describe a new geometric in-
variant of networks with obvious dynamical consequences. Our main result is
based on the simple observation that every self-fibration (i.e. graph fibration
from a network graph to itself) yields a symmetry in the dynamics of a net-
work. Self-fibrations should therefore be thought of as symmetries of network
graphs. The self-fibrations of a network in general do not form a group but
a semigroup, so self-fibrations may not correspond to classical symmetries.
Network graphs also need not admit any nontrivial self-fibrations, but we
will prove that every network is a quotient of a network with self-fibrations.
In fact, we prove the following theorem, that will later be formulated more
precisely.

Theorem 2.2.1. Every network N is (in a natural way) the quotient of a
network rN that admits a semigroup or semigroupoid ΣN of self-fibrations.
The dynamics of N is therefore embedded in that of rN. Moreover, the dy-
namics of rN is ΣN-equivariant.

Theorem 3.2.1 shows that every network dynamical system can be thought
of as a dynamical systems with “hidden symmetry”. This hidden symmetry
in general consists of a semigroup or semigroupoid (rather than a group) and
need not act on the network itself, but on a “lift” of it. We will show that
hidden symmetry can put severe geometric restrictions on the dynamics of a
network, and that it may have a nontrivial impact on the singularities that
determine the emergence and breaking of synchrony.

Theorem 3.2.1 implies in particular that networks can be studied with
techniques that are common in equivariant dynamics. For example, hid-
den symmetry can be accommodated for in standard ODE methods such as
Lyapunov-Schmidt reduction, center manifold reduction and Poincaré nor-
mal forms. Hidden symmetry also provides a possibility to classify stable
singularities and bifurcations in networks, using representation theory and
equivariant singularity theory. None of these techniques and methods cur-
rently exist for network systems. We discuss this point in some detail in
Section 2.9.

As a byproduct of Theorem 3.2.1, we will also obtain:

Corollary 2.2.2. When N does not have interchangeable inputs (i.e. all
inputs that its cells receive are distinct), then every robust synchrony in the
lift rN (and hence every robust synchrony in N itself) is an invariant subspace
for any ΣN-equivariant dynamical system.

This means that robust synchrony is often itself a consequence of hidden
symmetry.
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2.3. THREE EXAMPLES

This paper is based on ideas that are present in rudimentary form in
our earlier work [23], but we extend these ideas here and formulate them
in a more geometric language. We moreover demonstrate now that hidden
symmetry has far-reaching consequences for dynamics.

This paper is organised as follows. We start by discussing a few remark-
able phenomena in network dynamical systems in Section 2.3. We review
some existing general theory on coupled cell networks in Sections 2.4 and
2.5. So-called “homogeneous” networks and their symmetry properties are
studied in Sections 2.6, 2.7 and 2.8, and we prove Theorem 3.2.1 for these
networks in Section 2.8. Finally, in Section 2.9 we discuss the importance
of hidden network symmetry, and we demonstrate how it can be used in the
study of local bifuctions.

Acknowledgement
The authors would like to thank Marty Golubitsky for his interest in this
topic, and for asking the first questions that eventually led to this paper.

2.3 Three Examples

Figure 2.1 depicts the homogeneous networksA,B andC (see Section 2.6 for
a definition) that each contain three vertices receiving two different arrows.
One could think of these networks as consisting of (groups of) identical
neurons, that each receive for instance one excitatory signal (say through
the solid blue arrow) and one inhibitory signal (the dashed red arrow). The
states of the cells of the networks are determined by variables
xv1 , xv2 , xv3 ∈ R (for example membrane potentials). These variables then
obey the equations of motion displayed below the network graphs in Figure
2.1. The response function f : R3×R→ R describes the precise dependence
of the evolution of each cell on its own state and on its two incoming signals,
and thus determines the actual dynamics of the network. We let this f
depend on a parameter λ ∈ R, to express that it can sometimes be modified
in experiments, or that it may not be entirely known.

In spite of their different architectures, the dynamics of networks A, B
and C admit exactly the same (partial) synchronies. For example, setting
xv1

= xv2
in the equations of motion of either one of the networks, yields that

9xv1 = 9xv2 . The subspace {xv1 = xv2} is thus invariant under the dynamics of
all three network systems, independently of the precise form of the function
f . Similarly, xv1

= xv2
= xv3

gives that 9xv1
= 9xv2

= 9xv3
. Moreover, these

are the only such equalities. We conclude that the subspaces

{xv1
= xv2

} (“partial synchrony”) and {xv1
= xv2

= xv3
} (“full synchrony”)
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A
v1

v2

v3

B
v1

v2

v3

9xv1
= f(xv1

, xv1
, xv1

;λ)
9xv2 = f(xv2 , xv1 , xv1 ;λ)
9xv3 = f(xv3 , xv2 , xv1 ;λ)

9xv1
= f(xv1

, xv1
, xv2

;λ)
9xv2 = f(xv2 , xv1 , xv2 ;λ)
9xv3 = f(xv3 , xv2 , xv2 ;λ)

C
v3

v2

v1

9xv1
= f(xv1

, xv2
, xv3

;λ)
9xv2

= f(xv2
, xv2

, xv3
;λ)

9xv3 = f(xv3 , xv1 , xv3 ;λ)

Figure 2.1: Homogeneous networks with 3 identical cells and 2 types of inputs.

are the two “robust synchronies” of networks A, B and C. They can be
thought of as dynamical invariants of the network graphs, see Section 2.5.

To understand how synchrony can emerge or disappear, assume now that
f(0, 0, 0;λ) = 0. This means that x = (0, 0, 0) is a fully synchronous steady
state of the network dynamics for all values of the parameter λ. One then
says that a “synchrony breaking steady state bifurcation” occurs at λ = 0,
when less synchronous steady states emerge near this fully synchronous state
as λ varies near 0. This can only happen if for λ = 0, the linearisation
matrix of the differential equations around x = (0, 0, 0) is degenerate. This
linearisation matrix is easy to compute and reads (writing a = D1f(0, 0, 0; 0)
etc.)
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2.4. NETWORKS

for network A:

¨

˝

a+ b+ c 0 0
b+ c a 0

c b a

˛

‚ ;

for network B:

¨

˝

a+ b c 0
b a+ c 0
0 b+ c a

˛

‚ ;

for network C:

¨

˝

a b c
0 a+ b c
b 0 a+ c

˛

‚ .

Interestingly, these three linearisation matrices all have an eigenvalue a+b+c
with multiplicity 1 and a defective eigenvalue a with algebraic multiplicity 2
and geometric multiplicity 1. The eigenvector for the eigenvalue a+ b+ c is
fully synchronous, so synchrony breaking can only occur when a = 0. The
degeneracy of this eigenvalue suggests that the resulting steady state bifur-
cation may be quite unusual. Indeed, a singularity analysis (that we have
not included here) reveals that in a generic one-parameter synchrony break-
ing bifurcation in any one of the networks, two branches of steady states
x(λ) are born from the synchronous state: a partially synchronous and a
non-synchronous branch. Table 2.1 shows the asymptotics of these branches
for the three networks.

Although networks A, B and C display exactly the same robust syn-
chronies and spectral properties, Table 2.1 reveals that their synchrony
breaking bifurcations are very different. For example, the generic synchrony
breaking branches of the three networks clearly have different asymptotics.
Another distinction between the networks concerns the dynamical stability
of the bifurcating branches. It turns out that in a generic synchrony breaking
bifurcation, the fully synchronous state loses stability when λ passes through
0. It can be shown that in networks A and B, it is then only possible that
the non-synchronous state becomes stable, but it turns out that in network
C, stability can also be transferred to the partially synchronous state.

The different synchrony breaking behaviour of networks A, B and C
depends on nonlinearities in the differential equations. In this paper we shall
show that this nonlinear effect is fully determined by hidden symmetry.

2.4 Networks

Every dynamical system trivially has a network structure. Nevertheless, the
observables of certain dynamical systems have a nontrivial interaction struc-
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Network A
Asymptotics Synchrony

xv1 = xv2 = xv3 = 0 Full
xv1

= xv2
= 0, xv3

∼ λ Partial
xv1

= 0, xv2
∼ λ, xv3

∼ ±
?
λ None

Network B
Asymptotics Synchrony

xv1 = xv2 = xv3 = 0 Full
xv1

= xv2
= 0, xv3

∼ λ Partial
xv1
∼ λ, xv2

∼ λ None
xv1
− xv2

∼ λ, xv3
∼ ±

?
λ

Network C
Asymptotics Synchrony

xv1
= xv2

= xv3
= 0 Full

xv1
= xv2

∼ λ, xv3
∼ λ, xv1,2

− xv3
∼ λ Partial

xv1 ∼ λ, xv2 ∼ λ, xv3 ∼ λ None but
xv1 − xv2 ∼ λ2, xv1,2 − xv3 ∼ λ almost partial

Table 2.1: Asymptotics of steady state branches in generic synchrony breaking bifurca-
tions.

ture. Such a structure can be encoded in a network graph, that describes
how the evolution of each observable depends on the values of others. In
the literature [3, 12, 16], these network graphs or “coupled cell networks”
are usually finite directed graphs, of which the vertices (also referred to as
“cells”) and arrows (“couplings”) are all of a certain specified type (“color”).
One has in mind that every cell has a state, that evolves in time under the
influence of those cells from which it receives a coupling. One also asks
for compatibility between the colored cells and colored couplings, to express
that cells of the same type respond in the same way to their inputs. We will
use the following definition in this paper:

Definition 2.4.1. A network or coupled cell network is a finite directed
graph N = {A Ñs

t V } (where A are the arrows, V are the vertices, and s
and t denote the source and target maps), in which all vertices and arrows
are assigned a color (chosen from some finite set of colors), such that

1. if two arrows a1, a2 ∈ A have the same color, then so do their sources
s(a1) and s(a2), and so do their targets t(a1) and t(a2).
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2.4. NETWORKS

2. if two vertices v1, v2 ∈ V have the same color, then there is a color-
preserving bijection βv2,v1 : t−1(v1)→ t−1(v2) between the arrows that
target v1 and v2.

We remark here that the collection of color preserving bijections

G := {βv2,v1
: t−1(v1)→ t−1(v2) color preserving bijection | v1, v2 ∈ V }

is called the symmetry groupoid of the network N. This terminology is due
to Golubitsky, Stewart and Pivato [25]. The set G is a groupoid, because its
elements are invertible and the compositions βv3,v2 ◦ βv2,v1 define a partial
associative product. The symmetry groupoid describes “local symmetries” or
“input equivalences” between cells. Indeed, for fixed vertices v1, v2 ∈ V , we
can define Gv2,v1

:= {βv2,v1
∈ G}. By Definition 2.4.1, this set is nonempty if

and only if v1 and v2 have the same color, and this implies that the so-called
“vertex groups” Gv1,v1 and Gv2,v2 are then isomorphic.

Following [12, 25], we now describe a natural class of dynamical systems
that are compatible with a given network N. These network dynamical
systems are determined by so-called admissible maps or network maps. To
define these, we will first of all assume that every vertex v ∈ N has a “state”
determined by a variable xv ∈ Ev, taking values in a finite-dimensional
vector space Ev (or a manifold, but we will not pursue this straightforward
generalisation). The total state of the network is thus given by an element

x ∈ EN :=
∏
v∈V

Ev .

We have in mind that the state xv of cell v evolves under the influence of
only those xw for which there is an arrow a ∈ A with s(a) = w and t(a) = v.
This inspires us to choose, for every vertex v ∈ V , a “response function”

fv :
∏

t(a)=v

Es(a) → Ev .

Note that fv may depend on certain state variables xw repeatedly, if different
arrows a1 6= a2 that both target v have the same source w.

The network and response functions together now yield a map with a
“network structure”:

γNf : EN → EN defined by (γNf )v(x) := fv

¨

˝

∏
t(a)=v

xs(a)

˛

‚ .

As required, (γNf )v(x) only depends on the variables xs(a) for those a ∈ A
with t(a) = v.
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Finally, we want to impose some restrictions on the response functions
to ensure compatibility of γNf with the coloring of the arrows and vertices of
the network. First of all, it is natural to assume that vertices with the same
color have the same sets of state variables:

Ev1 = Ev2 when v1 and v2 have the same color.

It then follows from Definition 2.4.1 that Es(a) = Espβv2,v1 (a)q for all a ∈ A
with t(a) = v1. This last observation allows us to define, for each βv2,v1

∈ G,
an input identification map

β∗v2,v1
:
∏

t(a)=v2

Es(a) →
∏

t(a)=v1

Es(a) by (β∗v2,v1
X)s(a) := Xspβv2,v1 (a)q .

We shall require that cells of the same color respond in the same way to their
incoming signals, and that signals of the same color have the same impact
on a cell, i.e.

3. the response functions are groupoid-invariant:

fv1 ◦ β∗v2,v1
= fv2 for all βv2,v1

∈ G.

This final assumption expresses how the local symmetries of the network N
give rise to local symmetries in the components of the network maps γNf .
In particular, if a vertex group Gv,v is nontrivial, then fv must be invariant
under certain permutations of inputs.

We summarise our assumptions in the following definition:

Definition 2.4.2. A map γ : EN → EN is a network map or admissible map
for N = {A Ñs

t V } if there is a set of smooth response functions {fv}v∈V
satisfying 3, so that γ = γNf .

A “network dynamical system” is now given by the flow of the ordinary
differential equation

9x = γNf (x) with x ∈ EN.

As was pointed out in [3], one may think of this ODE as a set of coupled “open
control systems” (namely the individual ODEs 9xv = fv

´∏
t(a)=v xs(a)

¯

for
v ∈ V ). Rather than ODEs, one may also consider discrete-time network
dynamical systems on EN of the form

xn+1 = γNf (xn) .

We conclude by remarking that, as in Section 2.3, we sometimes want to
study parameter families of network dynamical systems. Then the response
functions fv = fv(·;λ) themselves become smooth functions of a parameter
λ that takes values in some open set Λ ⊂ Rp. For the moment, we shall
suppress this parameter dependence in our notation though.
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2.5. GRAPH FIBRATIONS AND ROBUST SYNCHRONY

2.5 Graph Fibrations and Robust Synchrony

Synchrony and partial synchrony are prominent forms of collective behaviour
of network systems, in which certain cells undergo the same evolution. In
this section, we briefly summarise the characterisations of robust synchrony
as given by Golubitsky and Stewart [25] on the one hand and DeVille and
Lerman [3] on the other. Mathematically, synchrony can be described as
follows. Let P = {P1, . . . , Pr} be a partition of the cells of a network N =
{A Ñs

t V }, that is P1∪ . . .∪Pr = V , and Pi∩Pj = ∅ if i 6= j. For v1, v2 ∈ V ,
we shall write v1 ∼P v2 if there is a k such that v1, v2 ∈ Pk. We then define
the polydiagonal subspace or synchrony subspace SynP ⊂ EN associated to
this partition as

SynP := {x ∈ EN |xv1
= xv2

when v1 ∼P v2 } .

For this definition to make sense, one must of course require that Ev1
= Ev2

when v1 ∼P v2.
Of dynamical interest are those synchronies that are preserved in time.

Such synchronies are determined by polydiagonal subspaces that are invari-
ant under the network dynamics, i.e. for which γNf (SynP ) ⊂ SynP . This
latter inclusion clearly depends on the choice of the response functions fv,
but certain synchrony subspaces are always dynamically invariant, irrespec-
tive of the choice of response functions. These special synchrony subspaces
are called “robust”. They depend only on the network N.

The following well-known result characterises the robust synchrony sub-
spaces in terms of the network structure. For a proof of Theorem 2.5.1, we
refer to [25].

Theorem 2.5.1. Let P be a partition of the cells of a network N. The
following are equivalent:

i) γNf (SynP ) ⊂ SynP for all choices of response functions {fv}v∈V sat-
isfying 3. In this case, one says that SynP is a robust synchrony
subspace.

ii) For all vertices v1 ∼P v2, there is a βv2,v1
∈ Gv2,v1

such that for
every arrow a with t(a) = v1, it holds that s(a) ∼P s pβv2,v1(a)q. The
partition is then called balanced.

Theorem 2.5.1 was recently generalized and reformulated by DeVille and
Lerman [3]. They formulate their result in the language of category theory
and graph fibrations.
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Definition 2.5.2. A map φ : N1 → N2 of networks is a graph fibration if

i) it sends cells to cells of the same color, arrows to arrows of the
same color, and the head and tail of every arrow a1 ∈ N1 to the
head and tail of φ(a1) ∈ N2;

ii) for every cell v1 ∈ N1 and every arrow a2 ∈ N2 ending at φ(v1),
there is a unique arrow a1 ∈ φ−1(a2) that ends at v1.

Property i) simply requires that φ is a morphism of colored directed
graphs. Property ii) is the fibration property: it says that φ restricts to a
color-preserving bijection

φ|t−1(v1) : t−1(v1)→ t−1(φ(v1)) ,

between the arrows targeting any vertex v1 ∈ N1 and those targeting its
image φ(v1) ∈ N2.

When φ : N1 → N2 is a graph fibration, we call N2 a quotient of N1

and N1 a lift of N2. Despite this terminology, we will not require that φ is
surjective. Figure 2.2 depicts quotients of networks A, B and C, and the
action of the corresponding graph fibrations on vertices.

C
v3

v2

v1

A
v1

v2

v3

E
v1 v2

D
v1 v2

F
v1

Bv1

v2

v3

v1 , v2 7→ v1v3 7→ v2

v1, v2
7→ v1

v3 7→
v2

v1, v2
7→ v1

v3 7→
v2

v1,
v2 7→

v1

v1 , v2 7→ v1

Figure 2.2: Graph fibrations that explain the robust synchronies of networks A, B and
C.

The dynamical relevance of graph fibrations is explained by the following
theorem, a proof of which is given in [3].

Theorem 2.5.3 (DeVille & Lerman). Let φ : N1 → N2 be a graph fibration.
Define the map φ∗ : EN2 → EN1 between the phase spaces of networks N2

and N1 by
(φ∗y)v := yφ(v) .
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Then φ∗ sends every solution y(t) of the dynamics of network N2 to a solu-
tion x(t) := φ∗y(t) of the dynamics of network N1, that is

φ∗ ◦ γN2

f = γN1

f ◦ φ∗ .

The solution x(t) = φ∗y(t) has the robust synchrony xv1(t) = xv2(t) when
φ(v1) = φ(v2). Moreover, every robust synchrony of N1 arises from a graph
fibration in this way.

Example 2.5.4. Consider the graph fibration φ : A → D in Figure 2.2
that maps cells v1, v2 ∈ A to v1 ∈ D and v3 ∈ A to v2 ∈ D. The resulting
conjugacy is the map

φ∗(yv1
, yv2

) = (yv1
, yv1

, yv2
) .

Indeed, if (yv1
(t), yv2

(t)) is a solution of the equations of network D,

9yv1
= f(yv1

, yv1
, yv1

;λ)
9yv2 = f(yv2 , yv1 , yv1 ;λ)

,

then (xv1
(t), xv2

(t), xv3
(t)) := φ∗(yv1

(t), yv2
(t)) = (yv1

(t), yv1
(t), yv2

(t)) is a
partially synchronous solution for network A, that is

9xv1
= f(xv1

, xv1
, xv1

;λ)
9xv2

= f(xv2
, xv1

, xv1
;λ)

9xv3
= f(xv3

, xv2
, xv1

;λ)
.

Similarly for the other graph fibrations in Figure 2.2, that are responsible
for the robust synchronies of the networks A, B and C that were discussed
in Section 2.3 .

More so than the rather combinatorial Theorem 2.5.1, Theorem 2.5.3 pro-
vides a geometric explanation of the occurrence of synchrony: robust syn-
chrony is a consequence of the existence of graph fibrations and of the re-
sulting conjugacies of dynamical systems.

Remark 2.5.5. Let φ : N1 → N2 and ψ : N2 → N3 be graph fibrations and

φ∗ : EN2
→ EN1

and ψ∗ : EN3
→ EN2

the conjugacies resulting from Theorem 2.5.3. Then ψ ◦φ : N1 → N3 is also
a graph fibration. Moreover, for z ∈ EN3 we have ((ψ ◦φ)∗z)v = z(ψ◦φ)(v) =
zψ(φ(v)) = (ψ∗z)φ(v) = (φ∗(ψ∗z))v. This proves that

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ .
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Alternatively, one may express this by saying that the map ∗ : φ 7→ φ∗

determines a contravariant functor from the category of networks to the
category of dynamical systems. We refer to [3] for more details on the
categorical approach to network dynamics (that we will not use any further
in this paper).

The following simple remark will be useful for us later:

Proposition 2.5.6. When φ : N1 → N2 is surjective, then φ∗ : EN2 → EN1

is injective. When φ is injective, then φ∗ is surjective.

Proof. This all follows directly from the definition (φ∗x)v := xφ(v).
Assume for instance that φ∗y = φ∗Y . Then yφ(v) = Yφ(v) for all cells v

of N1. When φ is surjective, this implies that yw = Yw for all cells w of N2.
Thus, y = Y and φ∗ is injective.

When φ is injective, let x ∈ EN1
be given and choose any y ∈ EN2

satisfying yw = xv whenever w = φ(v). Injectivity makes this possible.
Then φ∗y = x and φ∗ is surjective.

2.6 Homogeneous Networks

We shall restrict our attention to a rather simple class of networks for a
while:

Definition 2.6.1. A homogeneous network is a network with vertices of one
single color, in which the arrows that target one vertex all have a different
color.

A network N = {A Ñs
t V } is homogeneous precisely if ]Gv2,v1 = 1 for

all pairs v1, v2 ∈ V . In particular, every cell of such a network has the
same phase space Ev = E and responds in the same way to its incoming
signals. Also, signals of a different color may have a different effect on
a cell. Homogeneous networks have the advantage that they allow for a
rather simple algebraic treatment. For example, one calls the number of
incoming arrows of a cell the “valency” or “in-degree” of that cell. Note that
homogeneous networks have a single valency. A homogeneous network of
valency m can thus conveniently be described by m “input maps”

σ1, . . . , σm : V → V,

in which σj(v) is the source of the unique arrow of color j that targets vertex
v. It is also clear that a response function is simply a function f : Em → E
and that a homogeneous network map γNf : EN → EN must be of the form

(γNf )v(x) = f
`

xσ1(v), . . . , xσm(v)

˘

for all v ∈ V . (2.6.1)
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To guarantee that every cell notices its own state, we shall assume from now
on that

σ1 = IdV .

Formula (2.6.1) moreover shows that, without loss of generality, we can
assume that all the σj ’s are different: if σi = σj for i 6= j, then the arrows
of colors i and j can be identified, and f can then be redefined to depend
on less variables.

Example 2.6.2. Networks A, B and C of Figure 2.1 are examples of ho-
mogeneous networks with 3 cells of valency 3. The maps σ1, σ2, σ3 are given
in this case by

A v1 v2 v3

σ1 v1 v2 v3

σ2 v1 v1 v2

σ3 v1 v1 v1

B v1 v2 v3

σ1 v1 v2 v3

σ2 v1 v1 v2

σ3 v2 v2 v2

C v1 v2 v3

σ1 v1 v2 v3

σ2 v2 v2 v1

σ3 v3 v3 v3

.

Thus, σ1 =“arrows from every cell to itself”, σ2 = “all blue arrows" and σ3 =
“all red arrows". Figure 2.1 does not depict the arrows corresponding to
σ1. The figure also displays the homogeneous network differential equations
9x = γAf (x), 9x = γBf (x) and 9x = γCf (x).

The following simple proposition characterises graph fibrations of homo-
geneous networks.

Proposition 2.6.3. Let N1 = {A1 Ñ
s1
t1 V1} and N2 = {A2 Ñ

s2
t2 V2} be

homogeneous networks of valency m, respectively with input maps

σ
(1)
1 , . . . , σ(1)

m : V1 → V1 and σ(2)
1 , . . . , σ(2)

m : V2 → V2 .

Then φ : N1 → N2 is a graph fibration if and only if

φ|V1
◦ σ(1)

j = σ
(2)
j ◦ φ|V1

for all colors 1 ≤ j ≤ m.

Proof. It is obvious from Definitions 2.5.2 and 2.6.1 that φ must send σ(1)
j (v)

to σ(2)
j (φ(v)). Moreover, it is a graph fibration if it does so.

Remark 2.6.4. It is not hard to prove (see for example Proposition 7.2 in
[21]) that a partition V = P1∪ . . .∪Pr of the cells of a homogeneous network
N with input maps σ1, . . . , σm is balanced if and only if for all 1 ≤ j ≤ m
and 1 ≤ k ≤ r there is an 1 ≤ l ≤ r such that

σj(Pk) ⊂ Pl .
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The input maps then descend to maps on the partition. In fact, we can
construct a new homogeneous network NP with cells {vP1 , . . . , vPr } and input
maps σP1 , . . . , σPm that satisfy

σPj (vPk ) = vPl if and only if σj(Pk) ⊂ Pl .

By definition, the map of vertices

φ : V → {vP1 , . . . , vPr } defined by φ(v) = vPj if and only if v ∈ Pj

then satisfies φ ◦ σj = σPj ◦ φ for all 1 ≤ j ≤ m and thus extends to a graph
fibration. This confirms that NP is a quotient of N.

“Nonhomogeneous networks”, which have different cell types but no in-
terchangeable inputs, can be described in a similar way [21]. Although the
notation is heavier, all the results of this paper remain true for such networks.
Networks with a nontrivial symmetry groupoid, in which certain cells receive
several arrows of the same color, can not be described by a unique collection
of input maps. Some results in this paper therefore do not have an obvious
generalisation to such networks.

2.7 The Fundamental Network

In this section we define, for every homogeneous network, the lift with self-
fibrations mentioned in the introduction. Recall that every homogeneous
network N = {A Ñs

t V } can be described by input maps σ1, . . . , σm : V →
V , wherem is the valency of the network. In general, the composition σj ◦σk
need not be equal to any σi, but there does exist a smallest collection

ΣN = {σ1, . . . , σm, . . . , σn}

that contains σ1, . . . , σm and is closed under composition. By definition, ΣN

is the unique semigroup (composition of maps being the semigroup opera-
tion) with unit (i.e. ΣN is a “monoid”) generated by σ1, . . . , σm. Note in
particular that ΣN is finite, as there are only finitely many maps from the
finite set of vertices V to itself.
Remark 2.7.1. One aspect of the relevance of ΣN is easy to explain. Let
1 ≤ j1, . . . jq ≤ m be a sequence of colors. Then there is a path in N from
cell (σj1 ◦ . . . ◦ σjq )(v) to cell v, consisting of a sequence of arrows of colors
j1, . . . , jq respectively. Cell (σj1 ◦. . . σjq )(v) thus acts “indirectly” as an input
of cell v. Because ΣN is closed under composition, the set

V(v) := {σj(v) |σj ∈ ΣN}
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is equal to the set of vertices in N from which there is a path to v. Moreover,
ΣN determines all the sets V(v) (with v ∈ V ) simultaneously. Nevertheless,
it will become clear that much more information is contained in the product
structure of ΣN.

We are now ready to define another homogeneous network as follows:

Definition 2.7.2. Let N be a homogeneous network with input maps
σ1, . . . , σm and let ΣN be the above semigroup. The fundamental network
rN of N is the homogeneous network with vertex set ΣN and input maps
rσ1, . . . , rσm defined by

rσk(σj) := σk ◦ σj for 1 ≤ k ≤ m.

In other words, rN contains an arrow of color k from σi to σj if and only if
σi = σk ◦ σj .

The map rσk : ΣN → ΣN encodes the left-multiplicative behaviour of
σk ∈ ΣN. Thus, the fundamental network is a graphical representation of
the semigroup ΣN together with its generators σ1, . . . , σm. Such a graphical
representation is called a Cayley graph. Note that the fundamental network
rN of N can easily be constructed from the product table of ΣN.

Example 2.7.3. Recall the homogeneous networks A, B and C of Figure
2.1 and their input maps given in Example 3.4.1. In network A, σ2

2 = σ2
3 =

σ3 ◦ σ2 = σ2 ◦ σ3 = σ3. Hence

ΣA = {σ1, σ2, σ3}

is already a semigroup. In network B, on the other hand, σ2
2 6= σ1,2,3, so the

collection {σ1, σ2, σ3} needs to be extended to obtain a collection

ΣB = {σ1, σ2, σ3, σ4} with σ4 = σ2
2

that is closed under composition. Similarly, the input maps of network C
require an extension (in fact by two elements) to

ΣC = {σ1, σ2, σ3, σ4, σ5} with σ4 = σ2
2 and σ5 = σ2 ◦ σ3 .

The resulting input maps are the following.

A v1 v2 v3

σ1 v1 v2 v3

σ2 v1 v1 v2

σ3 v1 v1 v1

B v1 v2 v3

σ1 v1 v2 v3

σ2 v1 v1 v2

σ3 v2 v2 v2

σ4 v1 v1 v1

C v1 v2 v3

σ1 v1 v2 v3

σ2 v2 v2 v1

σ3 v3 v3 v3

σ4 v2 v2 v2

σ5 v1 v1 v1

.
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One checks that the composition/product tables of ΣA, ΣB and ΣC read

ΣA σ1 σ2 σ3

σ1 σ1 σ2 σ3

σ2 σ2 σ3 σ3

σ3 σ3 σ3 σ3

ΣB σ1 σ2 σ3 σ4

σ1 σ1 σ2 σ3 σ4

σ2 σ2 σ4 σ4 σ4

σ3 σ3 σ3 σ3 σ3

σ4 σ4 σ4 σ4 σ4

ΣC σ1 σ2 σ3 σ4 σ5

σ1 σ1 σ2 σ3 σ4 σ5

σ2 σ2 σ4 σ5 σ4 σ4

σ3 σ3 σ3 σ3 σ3 σ3

σ4 σ4 σ4 σ4 σ4 σ4

σ5 σ5 σ5 σ5 σ5 σ5

.

One reads off the input maps rσ1, rσ2 and rσ3 of the lifts rA, rB and rC. They
are given by

rA σ1 σ2 σ3

rσ1 σ1 σ2 σ3

rσ2 σ2 σ3 σ3

rσ3 σ3 σ3 σ3

rB σ1 σ2 σ3 σ4

rσ1 σ1 σ2 σ3 σ4

rσ2 σ2 σ4 σ4 σ4

rσ3 σ3 σ3 σ3 σ3

rC σ1 σ2 σ3 σ4 σ5

rσ1 σ1 σ2 σ3 σ4 σ5

rσ2 σ2 σ4 σ5 σ4 σ4

rσ3 σ3 σ3 σ3 σ3 σ3

.

The graphs of the fundamental networks rA, rB and rC are depicted in Figure
2.3. The figure also displays the differential equations 9X = γ

rA
f (X), 9X =

γ
rB
f (X) and 9X = γ

rC
f (X).

We note that network rA is isomorphic to network A. One may also observe
that network B is isomorphic to a quotient of network rB and that network
C is isomorphic to a quotient of network rC. We show below that this is not
a coincidence.

The following result clarifies the relation between a homogeneous network
and its fundamental network.

Theorem 2.7.4. Every homogeneous network N = {A Ñs
t V } is a quotient

of its fundamental network rN. More precisely, for every vertex v ∈ V of N,
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rA
σ3

σ2

σ1

rB

σ2

σ1

σ3

σ4

9Xσ1
= f(Xσ1

, Xσ2
, Xσ3

;λ)
9Xσ2 = f(Xσ2 , Xσ3 , Xσ3 ;λ)
9Xσ3 = f(Xσ3 , Xσ3 , Xσ3 ;λ)

9Xσ1 = f(Xσ1 , Xσ2 , Xσ3 ;λ)
9Xσ2 = f(Xσ2 , Xσ4 , Xσ3 ;λ)
9Xσ3 = f(Xσ3 , Xσ4 , Xσ3 ;λ)
9Xσ4 = f(Xσ4 , Xσ4 , Xσ3 ;λ)

rC

σ1σ2

σ3

σ4

σ5

9Xσ1 = f(Xσ1 , Xσ2 , Xσ3 ;λ)
9Xσ2 = f(Xσ2 , Xσ4 , Xσ3 ;λ)
9Xσ3 = f(Xσ3 , Xσ5 , Xσ3 ;λ)
9Xσ4 = f(Xσ4 , Xσ4 , Xσ3 ;λ)
9Xσ5

= f(Xσ5
, Xσ4

, Xσ3
;λ)

Figure 2.3: The fundamental networks of A, B and C and their equations of motion.

the map of vertices

φv : ΣN → V defined by φv(σj) := σj(v)

extends to a graph fibration from rN to N. In particular, the map φ∗v : EN →
E

ĂN
defined by (φ∗vx)σj (t) := xφv(σj) = xσj(v) conjugates the network maps

γNf and γĂNf , that is

φ∗v ◦ γNf = γ
ĂN
f ◦ φ∗v .

Proof. It follows from the definition of rσk that

σk(φv(σj)) = σk(σj(v)) = (σk ◦ σj)(v) = (rσk(σj))(v) = φv(rσk(σj)) .
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This shows that σk ◦ φv = φv ◦ rσk and thus by Proposition 2.6.3 that φv
extends to a graph fibration. The remaining statements follow from Theorem
2.5.3.

The image of the map φv of Theorem 2.7.4 is equal to the subset
{σj(v) |σj ∈ ΣN} of the vertices of N. Recall from Remark 2.7.1 that this
set consists of all the direct and indirect inputs of cell v. We will introduce
a special notation for these.

Definition 2.7.5. We define the input network

N(v) := {A(v) Ñs
t V(v)}

of a cell v in an arbitrary (i.e. not necessarily homogeneous) network N =
{A Ñs

t V } by

V(v) := {w ∈ V | ∃ path in N from w to v } and A(v) := {a ∈ A | t(a) ∈ V(v) } .

The input network N(v) consists of those cells that can be “felt” by cell v,
either directly or indirectly. In fact, it automatically holds that s(a) ∈ V(v)

for all arrows a ∈ A(v). Hence, N(v) is a subnetwork of N and the embedding

eN(v)
: N(v) → N

is an injective graph fibration. Theorem 2.7.4 can now be rephrased as
follows:

Corollary 2.7.6. The dynamics of the input network N(v) of every cell v
of N is embedded as the robust synchrony space

SynP(v)
:= {X ∈ E

ĂN
|Xσj = Xσk when σj(v) = σk(v) }

inside the dynamics of the fundamental network rN.

Proof. Theorem 2.7.4 implies that φv : rN → N(v) is a surjective graph
fibration for every cell v of N. By Proposition 2.5.6, the linear map

φ∗v : EN(v)
→ E

ĂN
defined by (φ∗vx)σj = xσj(v)

is therefore injective. By Theorem 2.7.4, it thus embeds the dynamics of
γ
N(v)

f inside the dynamics of γĂNf . It is clear that imφ∗v = SynP(v)
.

One readily checks that the partition P(v) of ΣN for which

σj ∼P(v)
σk if and only if σj(v) = σk(v)
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is balanced. Indeed, if σj ∼P(v)
σk, then we have for every input map rσl of

rN that (rσl(σj))(v) = (σl ◦ σj)(v) = σl(σj(v)) = σl(σk(v)) = (σl ◦ σk)(v) =
(rσl(σk))(v), and hence that rσl(σj) ∼P (v) rσl(σk). Thus P(v) is balanced.

Alternatively, one may recall from Theorem 2.7.4 that γĂNf ◦φ∗v = φ∗v ◦γNf
for any response function f . This implies in particular that

γ
ĂN
f (imφ∗v) ⊂ imφ∗v

and hence that imφ∗v is invariant under the dynamics of γĂNf .

Remark 2.7.7. Identifying EN(v)
with the synchrony space SynP(v)

⊂ E
ĂN

by

means of the embedding φ∗v, we can also write the identity φ∗v ◦γNf = γ
ĂN
f ◦φ∗v

as
γ
N(v)

f = γ
ĂN
f |EN(v)

.

In other words, we may think of the dynamics of N(v) as the restriction to
a synchrony subspace of the dynamics of rN.

Remark 2.7.8. The dynamics of N is itself embedded in the dynamics of rN
if there is a cell v in N so that N(v) = N. It is natural to assume that such
a cell exists: otherwise, the network may be considered pathological, or at
least quite irrelevant for our understanding of network dynamics.

Remark 2.7.9. Theorem 2.7.4 shows that for every cell v in the homogeneous
network N, there is a graph fibration φv : rN → N that sends cell σ1 of rN
(representing the unit of ΣN) to cell v of network N. On the other hand,
there is only one graph fibration φ : rN → N that maps cell σ1 of rN to cell
v of N, because if φ(σ1) = v, then φ(σk) = φ(rσk(σ1)) = σk(φ(σ1)) = σk(v).
So Theorem 2.7.4 in fact describes all possible graph fibrations from rN to
N.

Example 2.7.10. Our networks A,B and C are themselves input networks
of one or more of their cells. For example, A = A(v3), B = B(v3) and
C = C(v3), so the networks are quotients of their fundamental networks.
The corresponding graph fibrations are shown in Figure 2.4. For example,
the graph fibration φv3 : rC→ C sends

(σ1, σ2, σ3, σ4, σ5) 7→ (v3, v1, v3, v2, v1) .

This means that when (xv1
(t), xv2

(t), xv3
(t)) solves the equations of network

C, then

(Xσ1
(t), Xσ2

(t), Xσ3
(t), Xσ4

(t), Xσ5
(t))=(xv3

(t), xv1
(t), xv3

(t), xv2
(t), xv1

(t))
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solves those of network rC. Network C is therefore embedded inside network
rC as the robust synchrony space {Xσ1 = Xσ3 , Xσ2 = Xσ5}. Similarly,
network B is realised inside rB as the robust synchrony space {Xσ2

= Xσ3
}.

Finally, the dynamics of networks A and rA are bi-conjugate because φv3 :
rA→ A is an isomorphism.

2.8 Hidden Symmetry

In this section, we prove the main results of this paper. We start with an
observation.

Lemma 2.8.1. The fundamental network r

rN of a fundamental network rN
is isomorphic to rN.

Proof. Recall that the vertex set of rN is the semigroup ΣN = {σ1, . . . , σn},
and that rN has input maps rσ1, . . . , rσm defined by rσj(σk) = σj ◦ σk. Conse-
quently, the vertex set of r

rN is the semigroup Σ
ĂN

generated by rσ1, . . . , rσm,

while r

rN has input maps rrσ1, . . . , rrσm defined by r

rσj(rσk) = rσj ◦ rσk. We claim
that ΣN and Σ

ĂN
are isomorphic semigroups, which implies the lemma. To

prove our claim, simply note that (rσk ◦ rσj)(σi) = σk ◦σj ◦σi = Č(σk ◦ σj)(σi),
i.e.

rσk ◦ rσj = Čσk ◦ σj .

Because ΣN is the smallest semigroup containing σ1, . . . , σm, this observation
implies that

φ : σj 7→ rσj

defines a surjective homomorphism from ΣN to Σ
ĂN
. Moreover, φ is injective,

because ΣN contains a unit σ1, so that if rσj = rσk, then σj = σj ◦ σ1 =
rσj(σ1) = rσk(σ1) = σk ◦σ1 = σk. We conclude that φ is an isomorphism and,

in particular, a bijection between the vertices of rN and those of rrN. It is also
clear that φ intertwines the input maps of rN and r

rN, since

r

rσk(φ(σj)) = r

rσk(rσj) = rσk ◦ rσj = Čσk ◦ σj = φ(rσk(σj)) .

This proves that φ extends to an isomorphism between rN and r

rN.

Combining Theorem 2.7.4 and Lemma 2.8.1, we obtain:
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rA
σ3

σ2

σ1

A
v1

v2

v3

σ
1
7→
v
3
,
σ

2
7→
v
2

σ
3
7→
v
1

rB

σ2

σ1

σ3

σ4

B
v3

v2

v1

σ
4
7→
v
1
,
σ

1
7→
v
3

σ
2
,
σ

3
7→
v
2

rC

σ1σ2

σ3

σ4

σ5

C
v3

v2

v1

σ
2
,
σ

5
7→
v
1
,
σ

4
7→
v
2

σ
1
,
σ

3
7→
v
3

Figure 2.4: The graph fibrations φv3 : rA→ A and φv3 : rB→ B and φv3 : rC→ C.
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Theorem 2.8.2. Let rN be a homogeneous fundamental network. For all
1 ≤ i ≤ n, the map

φσi : ΣN → ΣN defined by φσi(σj) := σj ◦ σi

extends to a graph fibration from rN to itself. Every network map γĂNf is thus
ΣN-equivariant:

φ∗σi ◦ γ
ĂN
f = γ

ĂN
f ◦ φ∗σi for all σi ∈ ΣN ,

where we recall that φ∗σi : E
ĂN
→ E

ĂN
is defined by (φ∗σiX)σj := Xφσi (σj)

=
Xσj◦σi .

Proof. The statement of this theorem is a special case of the statement of
Theorem 2.7.4, with N replaced by rN and rN replaced by r

rN, noting that the
latter is isomorphic to rN.
Alternatively, from the fact that left-multiplication and right-multiplication
in ΣN commute, it also follows directly that every φσi commutes with every
input map rσk of rN:

φσi(rσk(σj)) = σk ◦ σj ◦ σi = rσk(φσi(σj)) .

By Proposition 2.6.3 it thus follows that φσi extends to a graph fibration.
The remaining statements of the theorem now follow from Theorem 2.7.4.

Remark 2.8.3. The maps φσi : rN → rN of Theorem 2.8.2 are examples of
graph fibrations from a network graph to itself. We shall refer to such graph
fibrations as self-fibrations. The self-fibrations of a network need not form
a group. For example, because the right-multiplication by σi in ΣN need
not be an invertible operation, the self-fibrations φσi need not be invertible.
Nevertheless, because the composition of two graph fibrations is obviously a
graph fibration, the self-fibrations of a network form a semigroup with unit.

Remark 2.8.4. Recall from Remark 2.7.9 that Theorem 2.8.2 describes all
the self-fibrations of a fundamental network. It clearly holds that (φσk ◦
φσj )(σi) = σi ◦ σj ◦ σk = φσj◦σk(σi), i.e.

φσk ◦ φσj = φσj◦σk .

This contravariant transformation formula shows that the self-fibrations of
a fundamental network rN form a semigroup that is isomorphic to Σ∗N, the
so-called opposite semigroup of ΣN, with product σj ∗ σk := σk ◦ σj .
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Remark 2.8.5. On the other hand, Remark 2.5.5 implies the covariant trans-
formation formula

φ∗σj ◦ φ
∗
σk

= (φσk ◦ φσj )∗ = φ∗σj◦σk

In particular, the assignment

σj 7→ φ∗σj from ΣN to gl(E
ĂN

)

defines a representation of the semigroup ΣN in the phase space of the fun-
damental network. This justifies that in Theorem 2.8.2 the fundamental
network maps γĂNf are called “ΣN-equivariant”. One could also say that ΣN

is a “symmetry-semigroup” of the fundamental network maps.

Remark 2.8.6. By Corollary 2.7.6, the dynamics of every input network N(v)

is embedded as the robust synchrony space SynP(v)
inside the phase space

of the fundamental network rN. Nevertheless, this synchrony space may not
be invariant under the action of ΣN on the phase space of the fundamental
network, i.e. it may not hold that φ∗σj (SynP(v)

) ⊂ SynP(v)
for all σj ∈ ΣN.

Alternatively, if it so happens that φ∗σj (SynP(v)
) ⊂ SynP(v)

, then it is possible
that φ∗σj acts trivially on SynP(v)

(i.e. fixes it pointwise).
All this means that ΣN may not act (or not act faithfully) on the phase

space of the network N, but only on the extended phase space of its funda-
mental lift rN, in which that of N is embedded. We think of the elements
of ΣN as hidden symmetries of N. Perhaps counterintuitively, these hidden
symmetries may have a major impact on the dynamics of N, see for example
Remark 2.8.10.

Example 2.8.7. Recall the fundamental networks rA, rB and rC of Example
2.7.3 and Figure 2.3. Their self-fibrations can be read off from the product
tables of ΣA, ΣB and ΣC given in Example 2.7.3. The action of these self-
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fibrations on vertices is as follows:
rA σ1 σ2 σ3

φσ1
σ1 σ2 σ3

φσ2
σ2 σ3 σ3

φσ3 σ3 σ3 σ3

rB σ1 σ2 σ3 σ4

φσ1
σ1 σ2 σ3 σ4

φσ2
σ2 σ4 σ3 σ4

φσ3 σ3 σ4 σ3 σ4

φσ4 σ4 σ4 σ3 σ4

rC σ1 σ2 σ3 σ4 σ5

φσ1 σ1 σ2 σ3 σ4 σ5

φσ2
σ2 σ4 σ3 σ4 σ5

φσ3
σ3 σ5 σ3 σ4 σ5

φσ4
σ4 σ4 σ3 σ4 σ5

φσ5
σ5 σ4 σ3 σ4 σ5

. (2.8.1)

We note that, other than the identity φσ1
, none of these self-fibrations is

invertible.
The symmetries of the equations of motion of the fundamental networks

can in turn be read off from these tables. They are given by:

Network rA

φ∗σ1
(X) = (Xσ1

, Xσ2
, Xσ3

)
φ∗σ2

(X) = (Xσ2
, Xσ3

, Xσ3
)

φ∗σ3
(X) = (Xσ3

, Xσ3
, Xσ3

)

Network rB

φ∗σ1
(X) = (Xσ1 , Xσ2 , Xσ3 , Xσ4)

φ∗σ2
(X) = (Xσ2 , Xσ4 , Xσ3 , Xσ4)

φ∗σ3
(X) = (Xσ3

, Xσ4
, Xσ3

, Xσ4
)

φ∗σ4
(X) = (Xσ4

, Xσ4
, Xσ3

, Xσ4
)

Network rC

φ∗σ1
(X) = (Xσ1

, Xσ2
, Xσ3

, Xσ4
, Xσ5

)
φ∗σ2

(X) = (Xσ2
, Xσ4

, Xσ3
, Xσ4

, Xσ5
)

φ∗σ3
(X) = (Xσ3 , Xσ5 , Xσ3 , Xσ4 , Xσ5)

φ∗σ4
(X) = (Xσ4 , Xσ4 , Xσ3 , Xσ4 , Xσ5)

φ∗σ5
(X) = (Xσ5

, Xσ4
, Xσ3

, Xσ4
, Xσ5

)

.

42



2.8. HIDDEN SYMMETRY

One may also check directly from the equations of motion that these maps
send solutions to solutions. We remark that in network rC the synchrony
space {Xσ1 = Xσ3 , Xσ2 = Xσ5} (which is isomorphic to network C) is only
invariant under the symmetries φ∗σ1

and φ∗σ3
, which both act trivially on

it. This confirms that network C does not admit any nontrivial symmetries,
while its fundamental lift does. Similarly, in network B, the synchrony space
{Xσ2 = Xσ3} (which is isomorphic to network B) is only invariant under
the trivial symmetry φ∗σ1

. Network A, on the other hand, is isomorphic
to network rA, and is hence symmetric itself: it admits the full symmetry
semigroup ΣA.

The following result emphasises the geometric importance of the hidden
symmetries of the fundamental network. It states that they determine its
robust synchronies.

Theorem 2.8.8. Let P = {P1, . . . , Pr} be a balanced partition of the cells
ΣN of a homogeneous fundamental network rN and let γ : E

ĂN
→ E

ĂN
be any

ΣN-equivariant map. Then

γ(SynP ) ⊂ SynP .

Proof. Assume that γ : E
ĂN
→ E

ĂN
is ΣN-equivariant, i.e. that γ ◦ φ∗σi =

φ∗σi ◦ γ for all σi ∈ ΣN. This implies that

γσi(X) = γσ1◦σi(X) =
`

φ∗σiγ
˘

σ1
(X) =

`

γ ◦ φ∗σi
˘

σ1
(X)

= γσ1
(Xσ1◦σi , . . . , Xσn◦σi) = γσ1

(X
rσ1(σi), . . . , Xrσn(σi)) .

In other words, γ is a homogeneous network vector field with response func-
tion γσ1

on the network with vertex set ΣN and with input maps rσ1, . . . , rσn.
Note that this does not imply that γ is a network vector field for the funda-
mental network rN, for which the input maps are rσ1, . . . , rσm (recall that m
may be strictly less than n in general).

Now recall from Remark 2.6.4 that P is a balanced partition if and only if
for all 1 ≤ j ≤ m and 1 ≤ k ≤ r there is an 1 ≤ l ≤ r such that rσj(Pk) ⊂ Pl
(that is if rσ1, . . . , rσm preserve the partition). But the rσj with m+ 1 ≤ j ≤ n
are all of the form rσj = rσj1 ◦ . . . ◦ rσjq for 1 ≤ j1, . . . , jq ≤ m. Hence all the
rσ1, . . . , rσn preserve the partition and the partition is automatically balanced
for the extended network with input maps rσ1, . . . , rσn. In particular, SynP
is invariant under γ.

Remark 2.8.9. Let φ : N → N be a self-fibration of a network and let
γ : EN → EN be an equivariant map, i.e. φ∗ ◦ γ = γ ◦ φ∗. Then Fixφ∗ :=
{x ∈ EN |φ∗x = x} is an example of an invariant subspace for γ, because
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φ∗(γ(x)) = γ(φ∗(x)) = γ(x) if φ∗(x) = x. This is how invertible network
symmetries (those that form the symmetry group of the network) yield in-
variant subspaces in a network dynamical system.

But when φ is not invertible, then one can imagine many more invariant
subspaces induced by symmetry. For example, the image imφ∗ of φ∗ and the
inverse image (φ∗)−1(W ) of a γ-invariant subspace W are invariant under
the dynamics of γ.

Remark 2.8.10. Recall from Remark 2.7.7 that we may think of the phase
space EN(v)

of the input network N(v) as a robust synchrony space in the

phase space E
ĂN

of the fundamental network rN. It holds that γN(v)

f =

γ
ĂN
f |EN(v)

and hence every robust synchrony space SynP ⊂ EN(v)
for the

dynamics of N(v) is also a robust synchrony space for the dynamics of rN.
Theorem 2.8.8 states that not only the class of network maps γĂNf : E

ĂN
→

E
ĂN

leaves EN(v)
and SynP ⊂ EN(v)

invariant, but the possibly much larger
class of ΣN-equivariant maps γ : E

ĂN
→ E

ĂN
does so as well. Thus, one may

argue here that robust synchrony is not “caused” by the network structure,
but that it is a consequence of hidden symmetry.

2.9 Hidden Symmetry and Local Bifurcations

We saw that every homogeneous network is embedded in a network with
semigroup symmetry, and it can be shown that a similar statement is true
for nonhomogeneous networks. For networks without interchangeable in-
puts, hidden symmetry may even be thought of as “causing” robust syn-
chrony. Similarly, it is conceivable that hidden symmetry generates many of
the other intriguing phenomena that have been observed in networks, and
that can not be explained from the existence of robust synchrony alone.
This includes the surprising character of synchrony breaking bifurcations.
In particular, it was shown in [23] that hidden symmetry can force spectral
degeneracies at local singularities. As a result, seemingly anomalous bifurca-
tions in networks may in fact be generic in classes of semigroup equivariant
dynamical systems. This is for example the case for the synchrony breaking
bifurcations in networks A,B and C discussed in Section 2.3.

In addition, (hidden) symmetry is easier to incorporate in the analysis of
network systems than “network structure”, if only because hidden symmetry
is not lost under coordinate changes and is therefore an intrinsic property
of a dynamical system. The analysis of networks may thus become much
simpler when hidden symmetries are taken into account. This is certainly
true for dynamical systems with “classical” symmetries [6, 14, 15]. As a re-
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sult, many generic phenomena in dynamical systems with compact symmetry
groups have been classified, and there exists a well-developed theory of local
bifurcations for dynamical systems with compact symmetry groups. This
theory relies on representation theory, equivariant singularity theory, and
(group-)equivariant counterparts of the most important methods from local
bifurcation theory, such as normal form reduction, Lyapunov-Schmidt reduc-
tion and centre manifold reduction. Neither of these theories and methods
admits a natural generalisation to systems with a network structure. On the
other hand, it turns out that (hidden) semigroup symmetry can be preserved
in all three aforementioned reduction methods. For normal form reduction
this was essentially proved in [21], and for Lyapunov-Schmidt reduction in
[23]. For centre manifold reduction the situation is more technical. How
semigroup symmetry affects a centre manifold, is the topic of our paper [19].

It is not our goal to develop the local bifurcation theory of dynamical
systems with semigroup symmetry any further in this paper. Instead, we
shall briefly sketch now how hidden symmetry can impact local bifurcations,
at the hand of our example networks A, B and C. We claim that the syn-
chrony breaking bifurcations in these networks that were discussed in Section
2.3, are determined by hidden symmetry, and we will sketch how this can
be proved. We stress that this section is only meant as an illustration of
the importance of hidden symmetry for the synchrony breaking behaviour
of networks. Several claims that are made in this section have been or will
be proved elsewhere.

We start with recalling some general theory from [23]. First of all, when
Σ is a semigroup and W a finite dimensional real vector space, then we call
a map

A : Σ→ gl(W ) for which Aσi ◦Aσj = Aσi◦σj for all σi, σj ∈ Σ

a representation of the semigroup Σ in W . A subspace W1 ⊂ W is called
a subrepresentation of W if Aσi(W1) ⊂ W1 for all σi ∈ Σ. The smallest
subrepresentations that build up a given representation, have a special name:

Definition 2.9.1. A subrepresentation W1 ⊂W of Σ is called indecompos-
able if W1 is not a direct sum W1 = W2⊕W3 with W2 and W3 both nonzero
subrepresentations of W1.

Unlike so-called irreducible subrepresentations, indecomposable subrep-
resentations may contain nontrivial subrepresentations, but these can then
not be complemented by another nontrivial subrepresentation. By defini-
tion, every representation is a direct sum of indecomposable subrepresen-
tations. Moreover, by the Krull-Schmidt theorem [23], the decomposition
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of a representation into indecomposable subrepresentations is unique up to
isomorphism.

When A : Σ → gl(W ) is a representation and L : W → W is a linear
map so that

L ◦Aσj = Aσj ◦ L for all σj ∈ Σ ,

then we call L an endomorphism of W and write L ∈ End(W ).

Remark 2.9.2. Recall from Theorem 2.8.2 that each fundamental network
map γ

ĂN
f : E

ĂN
→ E

ĂN
is ΣN-equivariant, i.e. γ

ĂN
f ◦ φ∗σi = φ∗σi ◦ γ

ĂN
f for all

σi ∈ ΣN. Differentiation of this identity at a fully synchronous (and hence
fixed by ΣN) point (say X = 0) yields that

L ◦ φ∗σi = φ∗σi ◦ L for L := DXγ
ĂN
f (0) .

In other words, the linearisation of a fundamental network map at a fully
synchronous point is an example of an endomorphism of the representation
of ΣN in E

ĂN
.

When λ ∈ R is an eigenvalue of an endomorphism L ∈ End(W ), the
generalized eigenspace

Eλ := ker (L− λIdW )dimW

is a subrepresentation of W , and the same is true for the real generalized
eigenspaces of the complex eigenvalues of L. It follows that the (unique)
splitting of W into indecomposable subrepresentations determines to a large
extent the spectral properties of its endomorphisms, and this explains how
symmetry and hidden symmetry can force the linearisation matrix of a net-
work map to have a degenerate spectrum. See [23] for more precise state-
ments on the relation between indecomposable subrepresentations and the
spectrum of endomorphisms.

Example 2.9.3. Recall the fundamental network maps γ rA
f , γ

rB
f and γ rC

f given
in Figure 2.3. Assume now that the cells in the networks are 1-dimensional
(that is Xσi ∈ R for all σi). Then the linearisation L

rA := DXγ
rA
f (0; 0) has

the form (writing a := D1f(0; 0) ∈ R etc.)

L
rA =

¨

˝

a b c
0 a b+ c
0 0 a+ b+ c

˛

‚.

When b + c 6= 0, then L
rA has an eigenvalue a + b + c with algebraic and

geometric multiplicity 1 and an eigenvalue a with algebraic multiplicity 2
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and geometric multiplicity 1. The generalized eigenspaces of L
rA are

Ea+b+c = {Xσ1
= Xσ2

= Xσ3
} and

Ea = {Xσ3
= 0} .

Recall that L
rA is an endomorphism of the representation of ΣA (this repre-

sentation was given in Example 2.8.7). It turns out that Ea+b+c and Ea both
are indecomposable subrepresentations of ΣA. Because the splitting of a
representation into indecomposable summands is unique up to isomorphism,
it follows that every endomorphism of ΣA can have at most 2 generalized
eigenspaces. Thus, the spectral degeneracy of L

rA is a consequence of sym-
metry. Because networks A and rA are isomorphic, the double degeneracy
of the eigenvalue a in network A is also a result of ΣA-equivariance.

Similar considerations apply to rB and rC. The linearisation L
rB :=

DXγ
rB
f (0; 0) reads

L
rB =

¨

˚

˚

˝

a b c 0
0 a c b
0 0 a+ c b
0 0 c a+ b

˛

‹

‹

‚

.

When b+ c 6= 0, its generalized eigenspaces are

Ea+b+c = {Xσ1 = Xσ2 = Xσ3 = Xσ4} and
Ea = {cXσ3 + bXσ4 = 0} .

Both are indecomposable subrepresentations of ΣB. In addition, equivari-
ance implies that L

rB leaves the synchrony space {Xσ2
= Xσ3

} (that is, net-
work B) invariant. This synchrony space intersects Ea in a 2-dimensional
subspace, and this explains the double degeneracy of the eigenvalue a in
network B. Finally, the linearisation matrix L

rC := DXγ
rC
f (0; 0) is

L
rC =

¨

˚

˚

˚

˚

˝

a b c 0 0
0 a c b 0
0 0 a+ c 0 b
0 0 c a+ b 0
0 0 c b a

˛

‹

‹

‹

‹

‚

.

When b+ c 6= 0, it has generalized eigenspaces

Ea+b+c = {Xσ1
= Xσ2

= Xσ3
= Xσ4

= Xσ5
} and

Ea = {c(b+ c)Xσ3
+ b2Xσ4

+ bcXσ5
= 0} .
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The degenerate eigenvalue a now has algebraic multiplicity 4 and geometric
multiplicity 1. Both generalized eigenspaces are indecomposable subrep-
resentations of ΣC. Moreover, Ea intersects the robust synchrony space
{Xσ1

= Xσ3
, Xσ2

= Xσ5
} (that is, network C) in a two-dimensional sub-

space. This explains the double degeneracy of the eigenvalue a in network
C.

Hidden symmetries do not only affect the linear, but also the nonlin-
ear terms of network maps. One can therefore expect different nonlinear
dynamics and bifurcations in networks with non-isomorphic (hidden) sym-
metry semigroups. Indeed, this is what explains the different character of
the synchrony breaking bifurcations in networks A, B and C.

These bifurcations can be investigated with various classical methods,
including normal form reduction, centre manifold reduction and Lyapunov-
Schmidt reduction. We will use the remainder of this section to sketch
how Lyapunov-Schmidt reduction (which is perhaps the simplest of these
methods) can predict the local asymptotics of the synchrony breaking steady
state branches of a fundamental network rN. In principle, information about
the stability of solution branches can not be obtained with this method.

So let us study the steady states of a parameter dependent fundamental
network map

γ
ĂN
f : E

ĂN
× Λ→ E

ĂN
with Λ ⊂ Rp an open set of parameters,

near a given synchronous steady state (say X = 0) and given parameter
value (say λ = 0). Thus, we assume that γĂNf (0; 0) = 0. Synchrony break-

ing can occur when the linearisation L := DXγ
ĂN
f (0; 0) is nonsynchronously

degenerate, i.e. when

E0 := gen kerL 6⊂ {Xσ1
= . . . = Xσn} .

Lyapunov-Schmidt reduction is a method to reduce the steady state equation
γ
ĂN
f (X;λ) = 0, locally near (X;λ) = (0; 0), to an equivalent equation of the

form
F (X;λ) = 0 for F : E0 × Λ→ E0 defined near (0; 0).

It was proved in [23] that it can be arranged that this F inherits ΣN-
equivariance from γ

ĂN
f (recall that ΣN restricts to a representation on E0).

Equivariance now imposes restrictions on F that impact the solutions of the
reduced bifurcation equation F (X;λ) = 0.

Moreover, if SynP ⊂ EĂN
is any robust synchrony space, then equivariance

implies that
F (E0 ∩ SynP ;λ) ⊂ E0 ∩ SynP ,
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even when E0∩SynP is not a subrepresentation of ΣN. In this way, Lyapunov-
Schmidt reduction replaces the problem of finding synchronous steady states
of γĂNf by the problem of finding zeroes of

F : E0 ∩ SynP × Λ→ E0 ∩ SynP .

This may entail a considerable dimension reduction of the bifurcation prob-
lem.

We shall now illustrate how these observations can be used to predict the
asymptotics of generic synchrony breaking steady state branches in networks
rA, rB and rC.

Example 2.9.4. Example 2.9.3 shows that network rA can only break syn-
chrony when a = D1f(0; 0) = 0. Assuming that a = 0 and b+c 6= 0, it holds
that

E0 = {Xσ3
= 0} .

Let us coordinatise E0 with the variables (Xσ1
, Xσ2

), and accordingly write
F = (Fσ1

, Fσ2
). In these coordinates, the action of ΣA (see Example 2.8.7)

on E0 is given by

φ∗σ1
(Xσ1 , Xσ2) = (Xσ1 , Xσ2) ,

φ∗σ2
(Xσ1 , Xσ2) = (Xσ2 , 0) ,

φ∗σ3
(Xσ1 , Xσ2) = (0, 0) .

The equivariance of F under φ∗σ2
now gives the identities

Fσ2(Xσ1 , Xσ2 ;λ) = (φ∗σ2
F )σ1(Xσ1 , Xσ2 ;λ)

= Fσ1(φ∗σ2
(Xσ1 , Xσ2);λ) = Fσ1(Xσ2 , 0;λ) and

0 = (φ∗σ2
F )σ2(Xσ1 , Xσ2 ;λ) = Fσ2(φ∗σ2

(Xσ1 , Xσ2);λ)

= Fσ2(Xσ2 , 0;λ) .

In other words, the map F is of the form

F (Xσ1 , Xσ2 ;λ) = (Fσ1(Xσ1 , Xσ2 ;λ), Fσ1(Xσ2 , 0;λ)) with Fσ1(0, 0;λ) = 0 .

Also, every F that is of this form (for some smooth function Fσ1
) is ΣA-

equivariant. Because the bifurcation equation F = 0 has a special form, one
may expect its local solutions to have a special structure as well. Indeed,
when λ ∈ Λ := R and Fσ1 admits the generic expansion

Fσ1
(Xσ1

, Xσ2
;λ) = αλXσ1

+bXσ2
+AX2

1

+O(|Xσ1 |·|λ|2+|Xσ1 |3+|Xσ2 |·||X||+|Xσ2 |·|λ|) , (2.9.1)
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then it follows that

Fσ2
(Xσ1

, Xσ2
;λ) = αλXσ2

+AX2
σ2

+O(|Xσ2
|·|λ|2+|Xσ2

|3) .

Under the nondegeneracy conditions that α, b, A 6= 0, the equation Fσ2
= 0

yields that Xσ2
= 0 or Xσ2

= − α
Aλ+O(λ2). In the first case, the equation

Fσ1
= 0 gives that eitherXσ1

= 0 orXσ1
= − α

Aλ+O(λ2). In the second case,

we find that Xσ1
= ±

b

bα
A2λ + O(λ). As a result, one can expect network

rA to generically support three solution branches near (X;λ) = (0; 0). They
have the asymptotics

Xσ1 = Xσ2 = Xσ3 = 0 ,

Xσ1 ∼ λ,Xσ2 = Xσ3 = 0 and

Xσ1 ∼ ±
?
λ,Xσ2

∼ λ,Xσ3
= 0 .

These branches lie on one ΣA-orbit. Moreover, recalling from Example 2.4
that xv1

= Xσ3
, xv2

= Xσ2
, xv3

= Xσ1
, this shows that the bifurcation in

network A displayed in Table 2.1 is a generic equivariant bifurcation. A
proof of this can also be found in [22, 23].

Example 2.9.5. Also network rB can only break synchrony when a = 0.
Assuming this and b+ c 6= 0, we recall from Example 2.9.3 that

E0 = {cXσ3 + bXσ4 = 0} .

When b 6= 0, we may coordinatise E0 by (Xσ1 , Xσ2 , Xσ3), letting Xσ4 =
− cbXσ3 . Similarly we coordinatise F : E0 × R→ E0 as F = (Fσ1 , Fσ2 , Fσ3).
The action of ΣB on E0 is then

φ∗σ1
(Xσ1 , Xσ2 , Xσ3) = (Xσ1 , Xσ2 , Xσ3) ,

φ∗σ2
(Xσ1 , Xσ2 , Xσ3) = (Xσ2 ,−

c

b
Xσ3 , Xσ3) ,

φ∗σ3
(Xσ1 , Xσ2 , Xσ3) = (Xσ3 ,−

c

b
Xσ3 , Xσ3) ,

φ∗σ4
(Xσ1

, Xσ2
, Xσ3

) = (−c
b
Xσ3

,−c
b
Xσ3

, Xσ3
) .
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The equivariance of F implies among others that

Fσ2
(Xσ1

, Xσ2
, Xσ3

;λ) = (φ∗σ2
F )σ1

(Xσ1
, Xσ2

, Xσ3
;λ)

= Fσ1
(φ∗σ2

(Xσ1
, Xσ2

, Xσ3
);λ) (2.9.2)

= Fσ1
(Xσ2

,−c
b
Xσ3

, Xσ3
;λ) and

Fσ3(Xσ1 , Xσ2 , Xσ3 ;λ) = (φ∗σ3
F )σ1(Xσ1 , Xσ2 , Xσ3 ;λ)

= Fσ1(φ∗σ3
(Xσ1 , Xσ2 , Xσ3);λ) (2.9.3)

= Fσ1(Xσ3 ,−
c

b
Xσ3

, Xσ3
;λ) .

In particular, it holds that Fσ2 = Fσ3 if Xσ2 = Xσ3 and we see that F
leaves the robust synchrony space E0 ∩ {Xσ2 = Xσ3} (that is, network B)
invariant. Moreover, the remaining restrictions on Fσ1

, Fσ2
, Fσ3

imposed by
equivariance can be formulated as restrictions on Fσ1

. It turns out that they
all reduce to a single additional restriction:

−c
b
Fσ1

(Xσ3
,−c

b
Xσ3

, Xσ3
;λ) = Fσ1

(−c
b
Xσ3

,−c
b
Xσ3

, Xσ3
;λ) .

Zeroes of F inside {Xσ2
= Xσ3

} thus correspond to zeroes of

G(Xσ1
, Xσ2

;λ) :=

ˆ

Fσ1
(Xσ1

, Xσ2
, Xσ2

;λ)
Fσ1

(Xσ2
,− cbXσ2

, Xσ2
;λ)

˙

,

with the above restriction on the otherwise arbitrary function Fσ1
. If we

assume for instance that λ ∈ Λ := R and that Fσ1
admits the generic

expansion

Fσ1
(Xσ1

, Xσ2
, Xσ3

;λ) = αλXσ1
+ (b+ βλ)Xσ2

+ (c+ γλ)Xσ3
(2.9.4)

+AX2
σ1

+BXσ1Xσ2 + CX2
σ2

+DXσ1Xσ3 + EXσ2Xσ3 + FX2
σ3

+O(||X||3+|λ|·||X||2+|λ|2·||X||) ,

then it follows from the condition on Fσ1
that βc− γb = Abc+Cc2−Ebc+

Fb2 = 0. Also,

G(X;λ)=
¨

˝

αλXσ1
+ (b+ c)Xσ2

+AX2
σ1

+O(|λ|·|Xσ2 |+|X1|·|X2|+|Xσ2 |2+||X||3+|λ|·||X||2+|λ|2·||X||)
αλXσ2 +HX2

σ2
+O(|Xσ2 |3+|λ|·|Xσ2 |2+|λ|2·|Xσ2 |)

˛

‚

in which H := A − c
bB + c2

b2C + D − c
bE + F . Under the nondegeneracy

conditions that α,A,H 6= 0, the equation Fσ2 = 0 now gives that Xσ2 = 0
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or Xσ2
= − α

Hλ + O(λ2). In the first case, the equation Fσ1
= 0 gives

that Xσ1 = 0 or Xσ1 = − α
Aλ + O(λ2). In the second case we find that

Xσ1 = ±
b

α(b+c)
AH λ+O(λ). Using our assumption that Xσ2 = Xσ3 and the

relation Xσ4
= − bcXσ3

, this yields three generic local steady state branches:

Xσ1 = Xσ2 = Xσ3 = Xσ4 = 0 ,

Xσ1 ∼ λ,Xσ2 = Xσ3 = Xσ4 = 0 and

Xσ1 ∼ ±
?
λ,Xσ2 = Xσ3 ∼ λ,Xσ4 = −c

b
Xσ3 ∼ λ .

These branches are not related by symmetry. On the other hand, because
xv1

= Xσ4
, xv2

= Xσ2
= Xσ3

, xv3
= Xσ1

, we have proved that the steady
state asymptotics of network B in Table 2.1 is generic in systems with hidden
ΣB-symmetry.

Example 2.9.6. As for the previous examples, network rC can only break
synchrony when a = 0. If we assume this and demand that b + c 6= 0, then
it follows from Example 2.9.3 that

E0 = {c(b+ c)Xσ3
+ b2Xσ4

+ bcXσ5
= 0} .

In the generic situation that b, c 6= 0, let us coordinatise this subspace by
(Xσ1

, Xσ2
, Xσ3

, Xσ4
). In particular, we then have that Xσ5

= − b+cb Xσ3
−

b
cXσ4

. Moreover, the action of ΣC on E0 is given in these coordinates by

φ∗σ1
(Xσ1

, Xσ2
, Xσ3

, Xσ4
) = (Xσ1

, Xσ2
, Xσ3

, Xσ4
) ,

φ∗σ2
(Xσ1

, Xσ2
, Xσ3

, Xσ4
) = (Xσ2

, Xσ4
, Xσ3

, Xσ4
) ,

φ∗σ3
(Xσ1

, Xσ2
, Xσ3

, Xσ4
) = (Xσ3

,−b+ c

b
Xσ3
− b

c
Xσ4

, Xσ3
, Xσ4

) ,

φ∗σ4
(Xσ1

, Xσ2
, Xσ3

, Xσ4
) = (Xσ4

, Xσ4
, Xσ3

, Xσ4
) ,

φ∗σ5
(Xσ1

, Xσ2
, Xσ3

, Xσ4
) = (−b+ c

b
Xσ3
− b

c
Xσ4

, Xσ4
, Xσ3

, Xσ4
) .

Coordinatising F : E0×Λ→ E0 as F = (Fσ1
, Fσ2

, Fσ3
, Fσ4

), we see that ΣC-
equivariance implies among others that the Fσi can be expressed in terms of
Fσ1 . For example,

Fσ2
(Xσ1

, Xσ2
, Xσ3

, Xσ4
;λ) = (φ∗σ2

F )σ1
(Xσ1

, Xσ2
, Xσ3

, Xσ4
;λ)

= Fσ1
(φ∗σ2

(Xσ1
, Xσ2

, Xσ3
, Xσ4

);λ)

= Fσ1
(Xσ2

, Xσ4
, Xσ3

, Xσ4
;λ) ,
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and similarly,

Fσ3
(Xσ1

, Xσ2
, Xσ3

, Xσ4
;λ) = (2.9.5)

Fσ1
(Xσ3

,−b+ c

b
Xσ3
− b

c
Xσ4

, Xσ3
, Xσ4

;λ)

Fσ4(Xσ1 , Xσ2 , Xσ3 , Xσ4 ;λ) = Fσ1(Xσ4 , Xσ4 , Xσ3 , Xσ4 ;λ) .

It turns out that equivariance is met precisely when Fσ1
satisfies the addi-

tional condition

Fσ1
(−b+ c

b
Xσ3
− b

c
Xσ4

, Xσ4
, Xσ3

, Xσ4
;λ)

= −b+ c

b
Fσ1

(Xσ3
,−b+ c

b
Xσ3
− b

c
Xσ4

, Xσ3
, Xσ4

;λ) (2.9.6)

− b

c
Fσ1(Xσ4 , Xσ4 , Xσ3 , Xσ4 ;λ) .

In particular, one may verify that Fσ1 = Fσ3 and Fσ2 = − b+cb Fσ3 − b
cFσ4

whenever Xσ1
= Xσ3

and Xσ2
= − b+cb Xσ3

− b
cXσ4

. This confirms that F
leaves the robust synchrony space E0 ∩ {Xσ1

= Xσ3
, Xσ2

= Xσ5
} invariant -

recall that this corresponds to network C.
We will chooseXσ2 andXσ4 as the free variables in this restricted system,

and write

Xσ1
= Xσ3

= − b

b+ c
Xσ2
− b2

c(b+ c)
Xσ4

.

It thus follows that we are searching for zeroes of the map

G(Xσ2
, Xσ4

;λ) :=

˜

Fσ1(Xσ2 , Xσ4 ,− b
b+cXσ2 − b2

c(b+c)Xσ4 , Xσ4 ;λ)

Fσ1
(Xσ4

, Xσ4
,− b

b+cXσ2
− b2

c(b+c)Xσ4
, Xσ4

;λ)

¸

,

with Fσ1
satisfying the above restriction. Assuming from this point on that

λ ∈ Λ := R, one can quite easily translate the restriction on Fσ1
into a set of

equations for its Taylor series coefficients (up to any desired order), that we
do not present here. The analysis of the equation G(Xσ2 , Xσ4 ;λ) = 0 now
proceeds as in the previous examples.

For instance, it is clear that G1 = G2 when we put Xσ2
= Xσ4

(corre-
sponding to partial synchrony). Setting Xσ2

= Xσ4
in the equation G1 = 0

then gives that Xσ2
= Xσ4

= 0 or Xσ2
= Xσ4

∼ λ, under generic conditions
on the Taylor coefficients of Fσ1 .

To find non-synchronous solutions, one may observe that the equation
G1−G2

Xσ2
−Xσ4

= 0 generically leads to a relation of the form Xσ2 = Xσ2(Xσ4 , λ).
Substituting this relation in the equation G2 = 0 then yields a solution
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branch in which Xσ2
∼ λ and Xσ4

∼ λ. Furthermore, doing the calculation
explicitly one finds that Xσ2 − Xσ4 ∼ λ2 generically. In particular, this
branch is not partially synchronous. Summarizing, we find the following
local branches of steady state solutions:

Xσ1 = Xσ2 = Xσ3 = Xσ4 = Xσ5 = 0 ,

Xσ2 = Xσ4 = Xσ5 ∼ λ,Xσ1 = Xσ3 = −b
c
Xσ2 ∼ λ and

Xσ2
= Xσ5

∼ λ,Xσ4
∼ λ,Xσ1

= Xσ3
=
−b
b+ c

Xσ2
− b2

c(b+ c)
Xσ4

∼ λ ,

where Xσ2
−Xσ4

∼ λ2 for the last branch. The identification Xσ1
= Xσ3

=
xv3

, Xσ2
= Xσ5

= xv1
and Xσ4

= xv2
then yields the results on network C

reported in Table 2.1.

Under generic conditions on the response function f = f(Xσ1 , Xσ2 , Xσ3 ;λ) of
networks A,B and C, Lyapunov-Schmidt reduction at a synchrony breaking
bifurcation leads to a reduced bifurcation equation F (X;λ) = 0 that satisfies
all the nondegeneracy conditions required of a generic equivariant bifurca-
tion. This fact can be checked by performing the Lyapunov-Schmidt reduc-
tion explicitly, and such an analysis proves that the asymptotics displayed
in Table 2.1 is correct. Not surprisingly, the explicit Lyapunov-Schmidt re-
duction requires a long analysis as well. For now, it is enough to remark
that “generic hidden symmetry considerations” correctly predict the content
of Table 2.1.

Information on the stability of the bifurcating branches can not be ob-
tained from Lyapunov-Schmidt reduction, but can be revealed with tech-
niques like centre manifold reduction. We are currently developing this
technique for dynamical systems with semigroup symmetry, so we shall not
prove any of the statements on stability that were made in Section 2.3.
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